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the Temperley-Lieb algebra

Definition

A Temperley-Lieb diagram is a non-crossing pairing of n points
above and n points below.

EG: or or

(Two diagrams that are topologically the same, are the same)
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Question

How many Temperley-Lieb diagrams on 2n points are there?

When n = 1 there is one such diagram; when n = 2 there are two;
when n = 3, five:

The number of TLn diagrams is counted by the Catalan numbers

cn =
1

n + 1

(
2n
n

)
.

Exercise

Find a bijection between TLn diagrams and allowed arrangements
of 2n parentheses.
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We can multiply Temperley-Lieb diagrams!
EG:

=

Okay, but:

= ????
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We can multiply Temperley-Lieb diagrams!
EG:

=

Okay, but:

= δ ·

Is it associative?
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Definition

The Temperley-Lieb algebra TLn for n ≥ 0:

As a vector space (over C[δ]), its basis is Temperley-Lieb
diagrams on 2n points;

Addition is formal;

Multiplication is the linear extension of
multiplication-by-stacking.

What is TL0?

TL0 ' C[δ].

This makes the “capping” map from TL2n to TL0 into a trace:

D 7→ D
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Temperley-Lieb has lots of additional structure:

Funny multiplications, EG: (A,B) 7→ A B

We also have inclusions TLn ↪→ TLn+1 given by

A 7→ A

And conditional expectations TLn+1 → TLn given by

A 7→ A

This additional structure is encompassed by saying that
Temperley-Lieb is a planar algebra.

Emily Peters When a picture is a proof



the Temperley-Lieb algebra
Knots and knot diagrams

The n-color theorems
Subfactors

Knots and knot diagrams

Definition

A knot is the image of a smooth embedding S1 → R3.

Question: Are knots one-dimensional, or three?

Answer: No.
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Theorem (Reidemeister)

If two diagrams represent the same knot, then you can move
between them in a series of Reidemeister moves:

= = =
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A knot invariant is a map from knot diagrams to something
simpler: say, C, or polynomials, or ‘simpler’ diagrams. Crucially,
the value of the invariant shouldn’t change under Reidemeister
moves.

Definition

The Kauffman bracket is a map from tangles (knots with loose
ends) to TL. Let A satisfy δ = −A2 − A−2. Then define〈 〉

= A

〈 〉
+ A−1

〈 〉
〈 〉

= δ 〈 〉
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〈 〉
= A

〈 〉
+ A−1

〈 〉

= A2

〈 〉
+

〈 〉

+

〈 〉
+ A−2

〈 〉
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〈 〉
= A

〈 〉
+ A−1

〈 〉

= A2

〈 〉
+

〈 〉

+

〈 〉
+ A−2

〈 〉
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= A3

〈 〉
+A

〈 〉
+A

〈 〉

+A−1

〈 〉
+A

〈 〉
+A−1

〈 〉

+ A−1

〈 〉
+ A−3

〈 〉

= A3δ3 + Aδ2 + · · · = −A9 + A + A−3 + A−7
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The Kauffman bracket is invariant under Reidemeister 2:

〈 〉
= A2

〈 〉
+

〈 〉
+

〈 〉
+ A−2

〈 〉

=

〈 〉
+ (δ + A2 + A−2)

〈 〉
=

〈 〉
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Exercise

The Kauffman bracket is also invariant under Reidemeister 3, but
it is not invariant under Reidemeister 1.

A modification of the Kauffman bracket which is invariant under
Reidemeister 1 is known as the Jones Polynomial when applied to
knots.
The Jones polynomial is pretty good, but not perfect, at telling
knots apart.

Question

Does there exist a non-trivial knot having the same Jones
polynomial as the unknot?
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Definition

A planar diagram has

a finite number of inner boundary circles

an outer boundary circle

non-intersecting strings

a marked point ? on each boundary circle

?

?

? ?
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Definition (Jones)

A planar algebra is

a family of vector spaces Vk , k = 0, 1, 2, . . ., and

an interpretation of any planar diagram as a multi-linear map

among Vi : ?

?

? ?

: V2 × V5 × V4 → V7

together with some axioms ensuring that diagrams act consistently.

Example

Temperley-Lieb is a planar algebra, with planar diagrams acting by
insertion and replacing-loops-by-δ.
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Example

Let Tn be the vector space over C spanned by tangles of string
with n fixed endpoints, up to (boundary-preserving) isotopy. The
Tn form a planar algebra, with planar diagrams acting by insertion.

The Jones polynomial extends to a homomorphism of planar
algebras between T = {Tn} and T L = {TLn}
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The n-color theorems
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A graph can be n-colored if you can color its faces using n different
colors such that adjacent regions are different colors. (Graphs with
faces are embedded in a surface. We’ll stick with planar graphs.)

Definition

The degree of a vertex is the number of edges it has coming into it.

The two-color theorem

Any planar graph where every vertex has even degree can be
two-colored.
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A three-color theorem (Grötszch 1959)

Planar graphs with no degree-three vertices can be three-colored.

The five-color theorem (Heawood 1890, based on Kempe 1879)

Any planar graph can be five-colored.

The four-color theorem (Appel-Haken 1976)

Any planar graph can be four-colored.
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Definition/Theorem

The Euler characteristic of a graph is V − E + F . For planar
graphs, V − E + F = 2.

Example

V=6

E=12

F=8

V-E+F=2

Corollary

Every planar graph has a face which is either a bigon, triangle,
quadrilateral or pentagon.
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A new proof of the four-color theorem:

First, observe:

If I can color then I can color . So,

replacing every degree-n vertex with a small n-gonal face doesn’t
change colorability.

Thus, if a coloring theorem is true for graphs where every vertex
has degree three, it is true for all graphs.
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A not-so-new proof of the five-color theorem:

First, observe:

If I can color then I can color . So,

replacing every degree-n vertex with a small n-gonal face doesn’t
change colorability.

Thus, if a coloring theorem is true for graphs where every vertex
has degree three, it is true for all graphs.
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Definition

The color-counting planar algebra: The vector space Vk is
functions from length-k sequences of colors to numbers:

Vk = {f : {colors}k → R}

Any planar graph (with a boundary) is a function from a sequence
of colors, to a number: how many ways are there to color in this
graph so that the boundary colors are the given sequence?
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Example

{1, 2, 3} → 1

{1, 2, 2} → 0

{i , j , k} →
{

1 if i , j , k distinct;
0 else.

{1, 2, 3} → n − 3

{1, 2, 2} → 0

{i , j , k} →
{

n − 3 if i , j , k distinct;
0 else.
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So, = (n − 3) .

Similarly, = (n − 2) and = (n − 1).

We also have a less obvious relation:

+ = + .
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This last relation can be used to prove two more relations:

=
n − 4

2

(
+

)
+

n − 2

2

(
+

)

and

=
n − 5

5

 + + + +


+

2n − 5

5

 + + + +
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= (n − 1) , = (n − 2) , = (n − 3) ,

=
n − 4

2

(
+

)
+

n − 2

2

(
+

)
,

=
n − 5

5
( + + + + )+

2n − 5

5
( + + + + ).

All these face-removing relations are positive for n ≥ 5.
Any planar graph contains at least one circle, bigon, triangle,
quadrilateral or pentagon (via Euler characteristic). So apply one
of these positive relations and repeat until you have nothing left
but a sum of positive multiples of the empty diagram.
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The standard invariant of a subfactor is a planar algebra P with
some extra structure. Most significantly, P0 is one-dimensional and
each Pk has an adjoint ∗ such that 〈x , y〉 := tr(y∗x) is an inner
product. Thus, our planar algebras have extra geometric structure.

A planar algebra with these properties a subfactor planar algebra.

Theorem (Jones, Popa)

Subfactors give subfactor planar algebras, and subfactor planar
algebras give subfactors.
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Example

Temperley-Lieb is a subfactor planar algebra if δ ≥ 2:

TL0 is one dimensional

Positive definiteness is the difficulty, and where δ ≥ 2 comes
in.

But wait, there’s more!

Theorem (Jones)

Any subfactor planar algebra contains a copy of T L (if the index
of the subfactor is four or more) or a quotient of T L (if the index
is under 4).
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Theorem (Bigelow, Morrison, P., Snyder)

The extended Haagerup planar algebra H is the positive definite
planar algebra generated by a single generator S with 16 strands,
subject to the relations

S?

?

···
= − S

?

?

···
, S?? ···

= S??
···

= 0, 8

8

8

S

S

?

?

∈ TL16,

15

S

? = α 9 9

7
S

?

S

?

, 16

S?

= β n + 1 2 n + 1

7 7
S

?

S

?

S

?

It is a (non-trivial) subfactor planar algebra.
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Proof sketch: Any set of generators and relations give us a planar
algebra; how do we know that H is a subfactor planar algebra?
How do we know H isn’t the trivial planar algebra?

Non-triviality follows from embedding H in a larger and easier
planar algebra. We check that the image there is non-zero.

To see that H is a subfactor planar algebra, we need to show that
dim(H0) = 1. That is, how do we see that any closed diagram as a
multiple of the empty diagram? We need to describe an
‘evaluation algorithm’ which will reduce any diagram to a multiple
of the empty diagram .
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For extended Haagerup, we treat each copy of S as a ‘jellyfish’ and
use the substitute braiding relations to ‘swim’ each jellyfish to the
top of the diagram. Begin with arbitrary closed diagram of Ss.

Now float each generator to the surface, using the relations.Emily Peters When a picture is a proof
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The diagram now looks like a polygon with some diagonals,
labelled by the numbers of strands connecting generators.

=

Each such polygon has a corner, and the generator there is
connected to one of its neighbors by at least 8 edges.

Use S2 ∈ TL to reduce the number of generators, and
recursively evaluate the entire diagram.
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The End!
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